New estimates for Ritz vectors
نویسندگان
چکیده
منابع مشابه
New estimates for Ritz vectors
The following estimate for the Rayleigh–Ritz method is proved: |λ̃−λ||(ũ,u)| ≤ ‖Aũ− λ̃ũ‖sin∠{u;Ũ}, ‖u‖= 1. Here A is a bounded self-adjoint operator in a real Hilbert/euclidian space, {λ,u} one of its eigenpairs, Ũ a trial subspace for the Rayleigh–Ritz method, and {λ̃, ũ} a Ritz pair. This inequality makes it possible to analyze the fine structure of the error of the Rayleigh–Ritz method, in part...
متن کاملThe convergence of harmonic Ritz values, harmonic Ritz vectors and refined harmonic Ritz vectors
This paper concerns a harmonic projection method for computing an approximation to an eigenpair (λ, x) of a large matrix A. Given a target point τ and a subspace W that contains an approximation to x, the harmonic projection method returns an approximation (μ + τ, x̃) to (λ, x). Three convergence results are established as the deviation of x from W approaches zero. First, the harmonic Ritz value...
متن کاملInterior Estimates for Ritz - Galerkin Methods
Interior a priori error estimates in Sobolev norms are derived from interior RitzGalerkin equations which are common to a class of methods used in approximating solutions of second order elliptic boundary value problems. The estimates are valid for a large class of piecewise polynomial subspaces used in practice, which are defined on both uniform and nonuniform meshes. It is shown that the erro...
متن کاملOn the Convergence of Q-ritz Pairs and Refined Q-ritz Vectors for Quadratic Eigenvalue Problems
For a given subspace, the q-Rayleigh-Ritz method projects the large quadratic eigenvalue problem (QEP) onto it and produces a small sized dense QEP. Similar to the Rayleigh-Ritz method for the linear eigenvalue problem, the q-Rayleigh-Ritz method defines the q-Ritz values and the q-Ritz vectors of the QEP with respect to the projection subspace. We analyze the convergence of the method when the...
متن کاملMaximum - Norm Interior Estimates for Ritz - Galerkin Methods
In this paper we obtain, by simple means, interior maximum-norm estimates for a class of Ritz-Galerkin methods used for approximating solutions of second order elliptic boundary value problems in R . The estimates are proved when the approximating subspaces are any of a large class of piecewise polynomial subspaces which we assume here to be defined on a uniform mesh on the interior domain. Opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1997
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-97-00855-7